58 research outputs found

    Oral History Interview: Jesse J. Trent

    Get PDF
    This interview is one of series conducted concerning the Oral History of Appalachia. Mr. Trent grew up in the coal camps of Logan County, West Virginia. In this interview, he tells of his life growing up in those camps and how it is different from today. He had nine other siblings. His mother (Allifair Trent) was a housewife and his father (Sampson Trent) was a coal miner. Mr. Trent discusses: his childhood; his family; the mining community; the mining business; his employment history (including mine working and as a bus driver); stories about the mines; how he met his wife (Edith); his opposition to mountaintop removal; how he lived through the Buffalo Creek Flood; as well as a small sections on automobiles (such as the Model T Ford), religion, World War I & II, the Great Depression. There is also an anecdote about tripping over a cow and being scared by a police dog; and other topics.https://mds.marshall.edu/oral_history/1461/thumbnail.jp

    Urine Screening for Opiod and Illicit Drugs in the Total Joint Arthroplasty Population

    Get PDF
    Introduction. Recent studies have shown an increase in post-operative orthopaedic complications associated with pre-operative opioid use. It is, therefore, important to know if patients use opioids before scheduled surgery. The purpose of this study was to determine if urine drug screening (UDS) is an effective screening tool for detecting opioid and illicit drug use prior to joint arthroplasty (JA) procedures. Methods. This retrospective chart review was performed with IRB approval on 166 out of 172 consecutive patients in a community-based practice. All the patients had a pre-operative UDS prior to primary or revision JA by a fellowship trained orthopaedic surgeon between March 2016 and April 2017. Patient demographics documented opioid and illicit drug use, co-morbid diagnosis, and UDS results were collected from clinical charts. Statistical analysis was conducted using Pearson Chi-square, Fisher’s exact, McNemar test, and t-tests with IBM SPSS Statistics, ver. 23. Significant differences were p < 0.05. Results. Sixty-four of 166 patients (38.6%) tested positive for opioids. Among them, 55.0% (35/64) had no history of prescription opioid use. Significant differences were observed when comparing the test results of the UDS with the patient reported history of prescribed opioids (p = 0.001). Conclusion. With a significant number of patients testing positive for opioids without evidence of a previous prescription, UDS may be beneficial for initial risk assessment for patients undergoing JA procedures

    Resident Experience Associated with Lung Biopsy Outcomes: A Cross-Sectional Study of Diagnostic Radiology Residents. Does the Level of Training Matter?

    Get PDF
    Introduction. Efficient execution of image-guided percutaneous biopsy is a procedural competency milestone in radiology training. Despite the importance of achieving such mastery, literature on successful execution by residents is limited. The purpose of this study was to evaluate resident performance as measured by nondiagnostic biopsy and major complication percentages, on CT-guided transthoracic core needle biopsies (TTNB) of lung and mediastinal lesions. Methods. A 12-year retrospective cohort study was conducted using charts from an academic hospital, 2006 - 2018, to evaluate TTNBs. Inclusion criteria were ≥ 18 years of age and ≥ 1 follow-up CT scan and chest x-ray. Bivariable associations by outcome(s) were evaluated. Results. Of 1,191 biopsies conducted, case distribution was 41%, 26%, 18%, and 15% for postgraduate years (PGY) 2 - 5, respectively. Results from biopsies were 139 (11.7%) nondiagnostic, 218 (18.3%) benign, and 834 (70.0%) malignant cases. Resident year by nondiagnostic outcome was not significant; p = 0.430. There were 148 major complications. Complication rate by PGY 2 - 5 was 13.0%, 13.3%, 12.9%, and 9.2%, respectively; differences were not significant, p = 0.488. Of the 139 nondiagnostic cases, 42 were re-biopsied during the study period with 81% re-classified as malignant; no repeat biopsy was observed for the remaining 97 nondiagnostic cases.Conclusion. Of 1,191 lung/mediastinal biopsies analyzed, nearly 12% were nondiagnostic and over 12% had major complications; neither associated with resident level of experience. Outcomes were not affected significantly by level of training. Residency programs may benefit from affording opportunities for newer PGY classes to participate in procedures. Nondiagnostic cases may benefit from timely, repeat biopsies

    Range-wide sources of variation in reproductive rates of northern spotted owls

    Get PDF
    We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993–2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Full text link
    Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    Registered Ship Notes

    Get PDF
    https://digitalmaine.com/blue_hill_documents/1179/thumbnail.jp

    Selective Dynamical Imaging of Interferometric Data

    Get PDF
    Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set

    First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass

    Get PDF
    In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching ∼100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 ± 2.3 μas (68% credible intervals), with the ring thickness constrained to have an FWHM between ∼30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8−0.7+1.4 μas, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0−0.6+1.1×106 M ⊙

    Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI

    Get PDF
    The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency
    corecore